FILM FLOW OF A NONLINEAR VISCOELASTIC FLUID
ALONG A CONICAL ROTOR
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Film flow of a nonlinear viscoelastic fluid, whose deformed behavior is described by using kine-
matic matrices, is considered along the surface of a rotating conical rotor.

Highly efficient centrifuge apparatuses in which drying and cooling by atomization, absorption, centri-
fuging, mixing, centrifugal casting, etc., are accomplished are used extensively in a number of branches of
industrial production (chemical, petrochemical, etc.). Solutions and melts of polymers, suspensions and
emulsions, colloidal solutions, dye materials, etc., treated in centrifuges exhibit a whole complex of non-
linear properties in the viscous~-flowing state. Recently, a rheological equation of state of the type [1-5]
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has successfully been used to describe the anomaly in the viscous and elastic properties in solving enginéering
problems.

The kinematic matrices By s depend on the gradients of the velocities and accelerations and on higher
derivatives of the velocity with respect to the time; ugfand 3y are the coefficients of effective viscosity and
normal stress, which are functions of the invariants By , and characterize the viscous and elastic properties
of the material, respectively. The coefficient of effective viscosity can be written as [6]

Uef = KE"!. (2)

As has been shown in [7], the coefficient 3; is proportional to the square of the viscosity and is deter-
mined by means of the formula
R 3)
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Let us consider an axisymmetric, steady stream of nonlinear viscoelastic fluid moving as a continuous
laminar film over the surface of a rotating cone (Fig. 1). Let us consider the fluid motion in a special I, o,
6 coordinate system coupled rigidly to the cone. The system introduced is orthogonal.

We consider inthe solution that: 1) the influence of film friction on the surrounding medium and of sur-
face tension on the film flow is negligible; 2) the angular velocity of the fluid equals the angular velocity of
the cone; 3) the fluid film thickness is considerably less than the corresponding coordinate 1.

Taking account of the assumptions made above, and using the rheological equation of state (1), we obtain
the differential equation of motion of the nonlinear viscoelastic fluid for this problem:
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The quantities F; and Fg are expressed by the dependences

S. M. Kirov Kazan' Chemical Technological Institute. Translated from Inzhenerno-Fizicheskii Zhurnal,
vol. 31, No. 2, pp. 231-236, August, 1976. Original article submitted May 27, 1975,

This material is protected by copyright registered in the name of Plenum Publishing Corporation, 227 West 17th Street, New York, N'Y. 10011. No part
of this. publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for 37.50.

896



Fig. 1. Flow diagram.
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Integration of (5) by using the boundary condition p = p; for 6 = 6, yields
= —{8— 8 pFs -+ po (6)

According to the expression (6) obtained, by knowing the equation of the surface, the pressure at any point of
the fluid film flowing over a rotating conical rotor can be found.

Let us estimate the order of the significance of 9p/87 by using (6):
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Therefore, @p/di) = pwirdy/l, while the remaining terms in {4) are on the order of pw?r. Hence, ap/

9l can be discarded.

The boundary conditions for this problem are

at 6 =0, yy="0;at §=28 %‘é_l_o U = Uypax (7)

Direct integration of (2) encounters definite mathematical difficulties. Hence, we use an approximate
method of solution based on using integral relations [8]. To do this, we give the velocity profile in a form ob-

tained analytically for a non-Newtonian fluid subject to a power law under analogous flow conditions [6]:
il
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Let us multiply all the terms in 4) by r and let us integrate with respect to 6 between 0 and §,:
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We consequently obtain
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The differential equation (10) was solved further on an electronic computer by a numerlcal method in-

volving the additional boundary condition
at I =Tinjee 8= 8 pnyy (11)

Here 8yt takes account of the mechanical energy of the fluid delivered from outside, for example, the excess
pressure in the nozzle. The value of 6yinit is determined experimentally.
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Fig. 2. Graphs of the dependence 8, = f{r) for » =104.7 sec,
Q =22 cm®/sec, a = 60°: a)2.5% PAAM solution, n=0.52, K=

42 dyn -sec/cm?; p=1.039 g/cm?; 1) Gy=27 dyn/cm?; 2) Gy =;

b) 3% PAAM solution, n = 0,48, K = 70 dyn -sec/cm?, p = 1,045
g/cm3; 3) Gy =40dyn/em?% 4) Gy= »; r, cm. Points indicate
experimental results; continuous curves are theoretical results,

Fig. 3. Dependence of film thickness of a 2.5% PAAM solution
on the angular velocity of the rotor and the discharge: a — 6, =
flw), Q =30 cm?’/sec; 1) Gy =27 dyn/cmz; 2) Gy=w; b—0y=
f@Q), w =157 sec-1; 3) Gy =27 dyn/ecm?; 4) Gy=»; n = 0.52;
K =42 dyn -sec/cm? p =1,039 g/cm®; @ =90°, &, cm.

The expression (10) can be solved analytically also by giving the change in fluid-film thickness with re-
spect to the radius déy/dr, as for non-Newtonian fluids [6]. Inthis case
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The solution of (12) affords the possibility of determining the fluid-film thickness as a function of the
technolpgical parameters Q, w, andthe properties of the reprocessed fluid. The maximum value of the dis-
crepancy between the results of the numerical and analytical solutions is just 5%, which, in turn, indicates
the legitimacy of the approximation made in deriving (12).

It should be noted that (10) for the power-law flow of a non-Newtonian fluid over a fixed disk (G, = =,
w = 0) is
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The expression (14) has been obtained separately in [9], Experiments were performed to verify the de~
pendences (10) and (12) obtained. The test setup and method of performing the experiments are described in
f10]. ’

Used as model fluid were 2.5% and 3% aqueous solutions of polyacrylamide (PAAM), The rheological
constants were determined by using a constant-pressure capillary viscometer.

As ané.lyses of (12), the results of a numerical solution of (10),'and the test data showed, the elastic
properties of the fluid exert a strong influence on the flow hydrodynamics. The fluid-film thickness over the

rotating cone increases (Fig. 2) with the increase in elasticity (with the decrease in the numerical value of Gg).
Given for comparison in Fig. 2 are computed curves for non-Newtonian fluids without taking account of the
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elasticity, while the other conditions remain equal. It is seen from the graphs that the elasticity exerts quitea
strong influence for small radii, but the discrepancies between the film thicknesses calculated taking and not
taking account of elasticity diminish with the increase in the radius.

Other conditions being equal, fluid-film thicknesses grow with the increase in the discharge, where the
growth intensity for nonlinear viscoelastic fluids is higher than for non-Newtonian fluids (Fig. 3). Anincrease
in the number of rotor rotations results in a diminution in fluid-film thickness (Fig. 3).

The negligible deviation of the experimental values of the film thickness from the calculated values
(8-5%) permits making a deduction about the validity of the approximations used in obtaining the dependences
(10) and (12), as well as about the possibility of their application for practical computations of centrifugal
machine components and chemical technological apparatuses.

NOTATION

p, hydrostatic pressure; J, unit matrix; K, n, rheological fluid constants; E, second invariant of the
strain-rate tensor; G, initial modulus of high elasticity; o, stress tensor; p, fluid density; 7, ¢, 6, cone
generator, longitude, and distance between the axial line and a fluid particle M, respectively; r, distance
between the surface and the axis of rotation; 2¢, cone vertex angle; Fi, Fg, projections of the mass forces
in the I and 6 directions; vy, meridian velocity; 06, fluid-film thickness; w, rotor angular velocity; Q,
fluid discharge per second; v, kinematic coefficient of viscosity; 6x, fluid-film thickness calculated without
taking account of the elastic properties.

LITERATURE CITED

1. V. G. Litvinov, Mekh. Polim., No, 3, 421 (1966); No. 6, 1103 (1968).

2. V. P. Remnev and N, V., Tyabin, Mekh. Polim., No, 3, 515 (1971),

3. J. Z. Whitel and A. B. Metzner, J. Appl. Polym. Sci., No, 7, 1867 (1963).

4. V. A. Kocherov, Yu. E. Lukach, and E. A. Sporyagin, Heat and Mass Transfer [in Russian], Vol. 3,
Minsk (1972), p. 198.

5. H. Kh. Zinnatullin, I. V. Flegentov, and F. A, Garifullin, Inzh.~-Fiz. Zh. 26, No. 2, 266 (1974).

6. K. D. Vachagin, N, Kh. Zinnatullin, and N, V, Tyabin, Inzh,-Fiz. Zh., 9, No. 2, 187 (1965).

7. G. V. Vinogradov, A. Ya. Malkin, Yu. G. Yanovskii, V. F, Shumskii, and E. A. Dzyura, Mekh.

Polim., No., 4, 714 (1971).

8. S. M. Targ, Fundamental Problems of Laminar Flow Theory [in Russian], GITTL, Moscow (1951),

9. V. V. Antonov, A. D. Glinkin, V. N. Trifonov, and N. V. Tyabin, Tr., Kazansk. Khim.-Tekhnol.
Inst., No, 47, 102 (1971),

10. N. Kh, Zinnatullin, K. D. Vachagin, and N, V., Tyabin, Tr., Kazansk. Khim.-Tekhnol. Inst., No, 35,
146 (1965).

899



